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ABSTRACT

An approach, based on recent work by Stern
[STER 1979], is described for obtaining the approxi-
mate transient behavior of both the M/M/l and M(t)/M/1
queues, where the notation M(t) indicates an exponen-
tial arrival process with time-varying parameter X(t).
The basic technique employs an M/M/l/K approximation
to the M/M/l queue to obtain a spectral representation
of the time-dependent behavior for which the eigen-
values and eigenvectors are real.

Following a general survey of transient anal-
ysis which has already been accomplished, Stern's
M/M/l/K approximation technique is examined to deter-
mine how best to select a value for K which will yield
both accurate and computationally efficient results.
It is then shown how the approximation technique can
be extended to analyze the M(t)/M/1 queue where we
assume that the M(t) arrival process can be approxi-
mated by a discretely time-varying Poisson process.

An approximate expression for the departure
process of the M/M/l queue is also proposed which im-
plies that for an M(t)/M/1 queue whose arrival process
is discretely time-varying, so too the departure proc-
ess can be approximated as discretely time-varying
(albeit with a different time-varying parameter).

In all cases, the accuracy and validity of
these results are examined by comparison with exact
analytic results, simulation or alternative discrete-
time approaches (e.g., the embedded Markov chain tech-
nique of Moore [MOOR 1972] [MOOR 1975]).
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1 . INTRODUCTION

The concepts of stationarity, ergodicity, and conver-

gence are fundamental to the analysis of queues in equilibrium.

The basic result of such analysis is that it is possible to

infer, from a finite number of observations of the arrival and

departure processes of a queue, the stochastic properties of

the queue over all time. Processes that occur in real life,

however, seldom satisfy these conditions and consequently do

not lend themselves to steady state analysis.

Despite this fact, the study of the transient behavior

of queues has been largely ignored. The reasons for this

include the facts that:

1) Very few transient solutions currently
exist.

2) Those that do exist are extremely compli-
cated to derive and manipulate.

3) Solutions are generally limited to single
queues.

Transient analysis has, moreover, come to be viewed

in two somewhat different ways. One view is that it deals

primarily with the analysis of stationary queues approaching

equilibrium. In this context, transient queueing analysis is

concerned with deriving the behavior of queues as they converge

to equilibrium as well as the speed with which the convergence

occurs (see, for example, [JAIS 1960] [TAKA 19611 [FELL 1968]

IBHAT 1968] JBS 1969]). A fundamental concept underlying this

version of transient analysis is the relaxation time (also

M-1



called the dominant time constant [GRIF 19781 [WSB 19751) which

is a measurt of the time it takes a queue to "achieve" steady

state. Paradoxically, the efforts put into this form of tran-

sient analysis have been generally directed at justifying the

use of steady state solutions by showing that the relaxation

time is negligible.

Another view of transient analysis is that it is con-

cerned with studying the behavior of queues whose input and

service processes are time dependent; more precisely, the pa-

rameters of the input and service processes are held to be

functions of time. Such queues are obviously nonstationary

and will never achieve equilibrium. The techniques for ana-

lyzing the behavior of nonstationary queues fall into two major

categories: those which treat the parameters of the arrival

and service processes as continuous functions of time, and

those which treat (or approximate) the parameters as discrete

(step) functions of time.

A number of the techniques treating the parameters as

continuous functions of time rely upon the Kolmogorov difference-

differentidl equations for birth-death processes. Using these

equations, Reuter and Ledermann IRL 19531 examined the M(t)/M(t)/l

queue, where the argument t indicates that the process has a

time varying parameter. They represented the queue by a Markov

process with an enumerable set of states, and then provided

sufficient conditions for the existence of a unique solution

to the transition probability Pik(t), the conditional proba-

bility that the system is in state k at time t, given that it

was in state i at time 0. These conditions include any one of

the following:

1-2



1) A ~0for some n >

2) An > 0 for n> i and W OD

Pn Pn* ... i+l I'n .. PIi
where w n n+ An -l+ ... + Xn.. + nA..A (n )

3) An > 0 for n > i and 1 D

n=1 n

4) An> 0 for n > i and 00 nn-1..i =On r~ X nA ..l-A.

5) A n> 0 for n > i and Pn = 0 for infinitely many n

6) A > 0 for n> i and p > 0 for n> N > i some N.

The A.i and p. are, respectively, the birth and death transition

rates associated with the underlying Markov process.

Takacs ITAKA 19551 investigated the virtual waiting

time process of a single server queue. For such a queue with

nonhomogeneous Poisson arrivals (i.e., with parameter A(t))

and general service time distribution, H(x), he was able to derive

the integro-differential equation for the waiting time dis-

tribution, F(t,x), at time t:

aF_____ - 3F_____ - A(t)F(t,x) + A(t)fx H(x-y)d F(t,y)

He then derived an expression for *(t,s), the Laplace-Stieltjes

transform of the waiting time:

-~ t

*Ct's) e St-I4i(s)]A(t) 1 s F-O)eSU+[I-O(s)lA(u) d
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where *(s) is the Laplace-Stieltjes transform of the service

time distribution and A(t) = (u) du. Takacs showed that

if the emptiness probabilities for the system can be determined

uniquely, then the waiting time distribution follows directly.

He also noted, however, that deriving the emptiness probabili-

ties is usually quite difficult.

Clark [CLAR 1956] attempted to solve the forward Kol-

mogorov equations for the M(t)/M(t)/l queue using a generating

function approach. No exact representation of the queue length

distribution was derived, but the problem was "reduced" to

obtaining the solution of an integral equation. Expressions

were derived, however, for the mean and variance of the queue

length which depend on the emptiness probabilities for the

system. Explicit results for the queue length were obtained

only for the special cases where X(t)/p(t) = c, some constant.

Another continuous time approach (proposed by Luchak
y y(LUCH 19561) involves the queue M(t)/E /1, where E here denotes

a weighted-sum erlang distribution whose integer parameter is

a non-negative random variable Y. Luchak found that if the

arrival process parameter can be expressed as a polynomial in

time, then the queue length distribution can be formulated

recursively; only in selected cases, however, can a closed

form solution be found. Luchak also noted that periodic ar-
rival rates can be dealt with more easily than most since the

queue length distribution need only be found for the initial

period. The state at the end of each period can then be used

as the initial condition for the next period. He further sug-

gested thdt if the initial state of a queue with periodic ar-

rivals was taken to be the steady state solution of a queue

with constant ;rrival rate equal to the average rate over a

period, then a "quasi-stationary" steady state could be reached

in only a fcw periods.

1-4



Keilson and Kooharian [KK 19601 examined a multi-di-

mensional phase space model for a queue with time-dependent

Poisson arrivals and general service time distribution, and

later extended their analysis to general time-dependent arri-

vals !KK 1962).

'asofer [HASO 19641 [ HASO 1965], using the results

of Reich [REIC 19581 [REIC 1959] in which it was shown that

the time dependent emptiness probabilities are the unique so-

lution of a Volterra equation of the first kind, derived expli-

cit results for the M(t)/G/l queue. Assuming a special form

for the Poisson parameter X(t), and taking fot A(u) du = t-zb(t),
Hasofer was able to write the emptiness probabilities for the

queue at time t as a power series in z, P(x,t) = znF (t).
n=O n

Using Reich's equations, some complex analysis and the added

assumption that b(t) and b'(t) are uniformly bounded, Hasofer

was able to find a general expression for the Laplace trans-

form of the F
n

More concise results were obtained when the Poisson pa-
n

rameter was assumed to be periodic. For X(t) = t-z E a
n=

sin(nwt+ n), Hasofer showed that the functions Fn have the
asymptotic form:

F n(t) [A Kncos (Kwt) + BKnsin(Kwt)]

K= K

and the Laplace-Stieltjes transform of the waiting time has a

similar asymptotic form.

Leesc and Boyd, in a later work [LB 19661, revisited
the numerical method proposed by Luchak and showed that it
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becomes intractable if the system of interest is observed for

any significant period of time. They also analyzed a number

of other approaches ranging from direct solutions of the Kol-

mogorov difference-differential equations and generating func-

tion techniques, to a Taylor series expansion of the queue

length probabilities, a matrix approach using step function

approximations of the arrival parameter and an integral equa-

tion technique developed by Wragg JWRAG 19631 which is somewhat

similar to that described by Clarke. in all cases, based on

computer resources available at that time, the computational

r,:quirements were found to be excessive.

Neuts [NEUT 1970] examined the transient behavior of

two queues in tandem, where the second queue is assumed to have

finitE buffer capacity. The input to the first queue is assumed

to be Poisson, while the service times of the first queue are

assumed to be derived from a general distribution. The analysis

relies on several embedded Markov renewal processes.

Rider [RIDE 1976] described an approximation to the ex-

,ctel queue length of a time-dependent M/M/l queue. He reduces

• diffrenv.-differential equations associated with the M/M/l

luf--ue to a single equation for the expected queue length which

is dependent on P (t), the probability that the system is empty

-1i time t. Exact expressions for Po(t) under restricted condi-
tins are provided as well as an approximation relating P (t)

to the expected queue length at time t for those cases when the

rate of change of the queue length is less than the service data.

Ross (ROSS 19781 examined a non-stationary M/G/l queue

'.icre tho time-dependent arrival parameter X(t) is itself gov-

... fed by a sto,,rastic process. Ross conjectures that the ex-

't' ted time a c'us tomer spends in this queue is greater than the

1-6



expected waiting time for a customer in a queue whose arrival

process parameter is stationary.

Kotiah IKOTI 19781 proposed approximations for the time-

dependent expected queue length of an M/M/1 queue. He discusses

iterative approaches that yield rational approximations to the

complex root U* which lies inside the unit circle of a quadratic

obtained by a Laplace transform-generating function technique.

Extension of the methods to the queues M/M/2 and M/EK/I are also

discussed.

Middleton [MIDD 1979] also examined the numerical solu-

tion of inverse transform, and established a number of tables

which can be used in the solution of time-dependent M/G/l queues.

McClish [MCCL 19791 examined the M(t)/G/I queue where

it was assumed that the arrival parameter is of the form A(t) =

Xo (1 + W4(t)), and the formulas are series expansions in e.

It is shown that under a variety of circumstances, periodicity

of the input is sufficient to guarantee that a quasi-limiting

distribution of the queue size exists.

Kambo and Bhalaik [KB 1979] examined two M/M/ queues

in tandem without feedback, where the arrivals and departures

have time-dependent parameters. They provide necessary and

sufficient conditions for the two queue length distributions to

be independent. They also observe that with certain restric-

tions on the service rate, the system is Poisson in the limit-

ing case.

Agrawala and Tripathi (AT 1979] present a method of

obtaining the transient solution of a general single server

queue which relies on characterizing the queueing system in

1-7
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terms of the virtual waiting time. The approach makes no as-

sumptions about the independence of the arrivals and provides

exact expressions for the virtual waiting time distribution and

expected virtual waiting time.

An example of the application of transient analysis to

a real problem is described by Bookbinder and Martell IBM 19791.

They employ a finite buffer, time-dependent single server queue

to model helicopter allocation for forest fires. A straight-

forward Runge-Kutta method is used to solve the associated finite

set of difference-differential equations.

One final continuous time technique of note involves

the diffusion approximation ([NEWE 19681 [NEWE 1971]). The

technique approximates queue processes and characteristics by

continuous functions, but is accurate only for heavily utilized

(p near 1) queues.

Of the techniques employing a discrete time approach,

one of the first was offered by Galliher and Wheeler [GW 19581.

In their technique, a system is observed at fixed, equidistant

points in time. The number of customers in the system at each

of these instants is examined via a Markov chain analysis whose

transition probabilities are derived from a Poisson distribution.

Leese and Boyd [LB 19661 also employed a discrete

time approach to study the M(t)/M/1 queue. Their technique

- ~ involves the juxtaposition of a series of M/M/1 queues; a fi-

nite time analysis then has to be performed during each in-

terval in which the arrival parameter is constant. The solu-

tion they proposed, however, involves the use of infinite sums

of Bessel functions to derive the transient characteristics of

each queue, and quickly becomes intractable.

1-8
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Eisen and Tainiter [ET 19631 and Yechiali and Naor
[YN 19691 investigated queues for which the arrival (and pos-
sibly service) rate is not a deterministic function of time.
The arrival rate is instead assumed to be a heterogeneous Pois-
son process governed by an extraneous phase process which is
itself a continuous time Markov chain. Customers arrive in a
Poisson stream with the arrival rate dependent upon the phase
of the queue; the amount of time spent in each phase is expo-
nentially distributed. Service times are either constant or
vary with each phase. The major results derived are for the

case of a process with two phases, where the service time is
exponentially distributed.

Neuts INEUT 1971a] extended the work of Yechiali and

Naor to examine a sequence of M/G/l queues each having param-

eters which are fixed over time intervals whose lengths are

exponentially distributed and where the parameters attain new

values in accordance with a given set of probabilities. This

approach is generally inapplicable to most useful queueing

problems where significant parameter changes occur in a more

deterministic fashion.

Another technique proposed by Neuts [NEUT 1971b] for

the GI/G/l queue consists of dividing the time axis into units
which correspond to the shortest possible service time and

estimating the distribution of arrivals during each such in-

terval. A sequence of queue length distributions can then be
derived by studying a Markov chain whose states are 2-tuples

comprised of the number of customers in the system and the

number of units of service remaining for the customer currently

being served.

More recently, generalized version of the methods
initially developed by Luchak and Clarke have appeared. Koopman

1-9
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IKOOP 1972] studied a system which has a periodic arrival proc-

ess and a finite queue. The arrival and service time parameters

are, therefore, dependent both upon time and the current queue

length. Koopman's technique then involved a numerical solution

of a finite set of differential equations.

Moore [MOOR 19721 [MOOR 19751 employed an embedded

Markov chain approach to solve the MX(t)/EY/I queue, where the

notation MX denotes a compound Poisson process for which cus-

tomers arrive in groups of random size X which are exponentially

distributed. Since the compound Poisson process permits the

ratio of the variance to the mean to be greater than 1, a wider

range of input processes can be approximated. The generality

of the EY service distribution is well known and was established

in [GAVE 19541 [LUCH 19561. Moore's basic approach uses the

Chapman-Kolmogorov equations for an M/G/1 queue. The regenera-

tion points for the imbedded Markov chain are the departure

instants of customers from the queue.

In a later paper, Minh [MINH 1978) explores the MX(t)/G/1

queue in discrete time. In this technique, the system is ob-

served at equally spaced intervals and all events of the system

(e.g., arrivals, transfers from queue to service, and depar-

tures) are assumed to occur at instants immediately prior to

these epochs. Minh obtains the Chapman-Kolmogorov difference

equations for a multivariate Markov chain which are then used

to express the vitual waiting time probabilities in terms of
the emptiness probabilities. A recurrence relation for calcu-

lating the emptiness probabilities is also derived. The tech-

nique allows the calculation of such measures as expected de-

parture and waiting times for each customer, expected number

1)f customers in the system at each epoch, and residual service

time probabilities.

1-10
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PIT

It has become apparent that the most viable techniques

for analyzing the transient behavior of queues center about a

discrete time approach ([MOOR 1975] [MINH 1978]). The rigid

assumptions, mathematical intractability and computational

complexity inherent to continuous time techniques limit their

flexibility and extensibility. Yet, while the discrete time

approaches reduce (if not overcome) these difficulties, they

still present sizable challenges in trying to accurately rep-

resent queues via discretely time-varying processes and ana-

lyzing the behavior of complex networks of such queues; in

fact, little work has been performed to date in the latter

area.

Our objective in this paper, then, is to begin to lay

the groundwork for the approximate (yet effective) transient

analysis of queueing networks. We propose to do this in two

stages. In Section 2.1, we will develop a modified version of

the finite time analysis initially proposed by Leese and Boyd

[LB 19661 for the M(t)/M/1 queue. )ur modification centers

about providing an approximate method (based on work by Stern

[STER 1979]) for deriving the transient behavior of an M/M/1

queue which will replace the exact solution technique for ob-

taining the transient behavior based upon infinite sums of

Bessel functions. This technique is both computationally ef-

ficient and can yield results to any desired level of accuracy.

In Section 2.2 we will show that by making certain

assumptions about the ergodicity of the input and service proc-

esses of the M(t)/M/1 queue over finite intervals, an input

process which is discretely time-varying exponential (i.e.,
' .1M(t)) yields a departure process which is also of the form

M(t). This result, which is an approximation, greatly facili-

* ttates the integration of a set of M(t)/M/I queues into a network,

1-11



and the subsequent transient solution of that network. It is
worth noting that to date, only one result relating to depar-
ture processes of time dependent queues has been derived; this

when Mirasol [MIRA 19631 and Kendall [KEND 19641 showed that

the departure process for the M(t)/G/- queue is M(t).

Following these two developments, the results of sev-

eral experiments validating our analysis will be provided in
Section 3. A summary of our current work and a description of

future research are developed in Section 4.

Sr

1-12



2. APPROXIMATE TRANSIENT ANALYSIS OF THE
M(t)/M/1 QUEUE

2.1 THE APPROXIMATION TECHNIQUE

The precise situation with which we are concerned is

shown in Fig. 2-1. In consonance with other discrete time ap-

proaches, we will make the assumption that the arrival rate

parameter, A(t), varies (or can be approximated as varying)

with time in a step-wise fashion, and that between those in-

stants when X(t) changes, it can be assumed to be stationary.

We will further assume that the service parameter remains

constant for all intervals.

Xi 2 ,J A3 ,J

FI II-
t0 t 1  t 2

Figure 2-1

The instants at which X(t) changes are given by to,

t 1 and the intervals bounded by those instants are I1

[to,t 1 ), 12 = t,t 2 ), etc. Since the service parameter remains

constant for all intervals, we have within each interval an

M/M/l queue. Our analysis, therefore, conveniently decomposes

into the sequential analysis of a set of (stationary) M/M/l

queues over finite intervals; it is the analysis of these

individual queues which concerns us in this section.

2-1



An approximate transient analysis of the stationary M/M/I

queue has been performed by Stern [STER 19791 and relies heavily

tpon techniques developed by Keilson [KEIL 19741 [KEIL 19641 (KEIL

19651 [KEIL 19661. In trying to overcome the complexity associ-

ated with deriving exact expressions for such quantities as the

transient expected queue length or throughput, which involve in-

finite sums of Bessel functions [SAAT 19611, Stern approximates

the M/M/l queue by a finite buffer, M/M/l/K queue. The justifi-

cations for such an approximation include the facts that:

* Over a finite interval, only a limited num-
ber of arrivals can occur; hence, providing
infinite buffer capacity is unnecessary.

* Few real systems have infinite buffer space
and consequently do not exhibit true M/M/i
behavior.

Stern begins with the fundamental transition rate

equation

p= Q * p (1)

where Q is the (K+I)*(K+I) infinitesimal transition rate matrix

associated with the finite Markov chain underlying the M/M/I/K

queue, p is the state probability vector, and p' is the deriva-

tive of p. By changing variables, it is possible to obtain

u' = E**(-1/2) * p (2)
where

e1

e 2  0

E=

eK

2-2
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and

en = p**n (1-p)/(l-p**(K+l)), p = h/p

which is just the steady state solution of being in state n
(<K) for the H/H/i/K queue.

Proceeding, we can define

u' -p * A * u (3)

where

p 4P 0 ...

-4p (l+p) - p 0 ...
A=

Now, the transformation in (2) symmetrizes the matrix Q in
(1). Consequently, the finite Markov chain associated with Q

is time reversible and a spectral representation of the time

dependent behavior of the chain is available for which the
eigenvalues and eigenvectors are real. In fact, both Q and A

have real eigenvalues and the solution to equation (3) may,

therefore, be written as

UMt [ exp(-P*l.*t) Uu. T u(O)] (4)

where 1. and u. are the ith eigenvalue and eigenvector (ar-
ranged in ascending order) of A, respectively. It is worth

noting that 0 = 0 and I.>0, i/O.
o
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The transient probability distribution for the number

in system can then be given by

K
p(t) = p0 + i ciPi exp(-P*li*t) (5)

where p0 is the steady state queue length distribution, and

Pi = E**(l/2) * ui  (5.1)

c. = uT * E**(-1/2) * p(O) (5-2)1 1L

The expected queue length at time t is seen to be given by

(t= T*p(t) , B = [0,1,2,...,K]T

or

K T
K(t) = no0 + c. pi exp(-p*l.*t) (6)

where n0 is the steady state expected queue length.

The application of (5) and (6) to our particular prob-

lem is immediate. Since we have assumed stationarity within

each of the intervals lI, we are dealing with a sequence of
M/M/l queues which we can approximate as a sequence of M/M/l/K

(ueues. Some fundamental questions remain, however. The first
concerns the way in which the behavior of the queue is approxi-

mated when p > 1. The technique developed by Stern is valid

only when p < 1, since the associated Markov chain is otherwise

r Ot ergodic and the time reversibility argument does not apply.

As a result, we will employ the following alternative approxima-

tion. If we assume that the queue length at the beginning of

some interval T. for which p > 1 is given by n(tj 1 ), then we

will approximate the transient expected queue length by:

2-4
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;(T) = (t j 1) + (A - ) *(T-tj 1 ) , & £ I

A second question centers about the selection of the

value of K. in a particular interval I. (for which p < 1).

Our objectives in selecting a value for K. are threefold:J

" To ensure that the limiting (i.e., steady
state) expected queue lengths of our
M/M/l/K approximation and the ideal M/M/l
queue are within a sufficient distance
of each other.

* To ensure that the rate at which our
M/M/i/K approximation approaches its
steady state value is comparable to that
associated with the M/M/1/a queue. The
term commonly used to quantify this rate
of approach to steady state is the relaxa-
tion time.

* To ensure that computational tractability
is maintained.

In this regard, two alternative methods of selecting K. wereJ
considered. The first sought to define K. based on a 2o esti-J
mate of the queue length during the interval I.. Thus, if atJ
the beginning of Ii, n(tj-1 ) = 0, then K. would be defined as:

K. =n 0  + 2aO oj oj

where

, n oj P /01 -pj

= the steady state expected queue length

and

2% 2
: + (IP )(-pj) 3
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= 2pj/(l-pj) 4(l/pj + pj)/(l - pj)

= twice the standard deviation of

On the other hand, if at the beginning of an interval

I j n(tj1 ) > 0, a choice for K. of

Kj = (tj_ 1 ) + noj + 2 noj

will do the same.

A second method of defining K. is closely tied to the

relaxation time of the associated approximation. By Stern's

method, the relaxation time of a particular M/M/l/K approxima-

tion is given by:

T I/p (l+p - 24- cos e)
where

6 =n/K+l

and the expression

l+p - 24p cos 8

is equal to the least non-zero eigenvalue associated with the

matrix A defined earlier. Obviously, as K 4 o, £ approaches

its minimum value (and T its maximum).

It was decided that K. would be defined such that the.3
relaxation time associated with the M/M/l/K queue was equal to

2/3 that of the M/M/l case. Thus, if at the beginning of Ij,

n(tj I) 0, then

2-6
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K = INT (cos 1(1.5- .25 )) +1

J

where INT is a function which yields the greatest integer less

than or equal to its argument. If at the beginning of I., n

(tj. 1 ) >0, then we define

(P+X.)
K. = INT (n (t._) + cos " (1.5- .25 )) +1 (7)

Tables 2-1 and 2-2 show how the M/M/l/K approximation

associated with the first and second definitions, respectively,

of K. compare with the M/M/l case and each other. The initialJ
queue length is assumed to be zero in all cases. As can be

seen, it is not until p>.88 that the 2o-based definition of K.J
yields values for the expected steady state queue length and

relaxation time which are closer to the exact M/M/l case than

those of equation (7). As a consequence, equation (7) was

chosen to serve as our general definition for K..
J

The third question stems from the fact that the value

of K. usually varies over different intervals, creating a prob-J
lem for the effective approximate analysis of a series of such

queues. From (5.2) and (7), it is evident that the distribu-

tion p(t) plays an important part in the transition between

distinct intervals. In fact, the initial queue length distri-

bution p(O) appearing in equation (5.2) for a particular in-

terval will be set equal to the distribution p(t) at the end

of the preceeding interval. It will therefore be necessary to

'translate" the K.+ -dimensional queue length distribution

vctor pj(t) a' the end of some interval I. into the K +1-
3 j+l

dimensional queue length distribution vector pi+ (O) at the

beginning ct the succeeding interval I.j+1"
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TABLE 2-1

~2a-BASED DEFINITION RESULTS

p K* NAPP  NEXACT  NAPP/NEXACT

0.10 0 0.11111
0.20 1 0.16667 0.25000 0.66667
0.30 2 0.34532 0.42857 0.80576
0.40 3 0.56158 0.66667 0.84236
0.50 5 0.90476 1.00000 0.90476
0.60 8 1.40838 1.50000 0.93892
0.70 14 2.26178 2.33333 0.96933

0.80 29 3.96282 4.00000 0.99070
0.81 32 4.23161 4.26316 0.99260
0.82 35 4.52711 4.55556 0.99376
0.83 38 4.85510 4.88235 0.99442
0.84 42 5.22614 5.25000 0.99545
0.85 47 5.64701 5.66667 0.99653
0.86 52 6.12496 6.14286 0.99709
0.87 59 6.67820 6.69231 0.99789
0.88 67 7.32192 7.33333 0.99844
0.89 77 8.08211 8.09091 0.99891

0.90 89 8.99314 9.00000 0.99924
0.91 105 10.10628 10.11111 0.99952
0.92 126 11.49680 11.50000 0.99972
0.93 155 13.28382 13.28571 0.99986
0.94 196 15.66567 15.66667 0.99994
0.95 259 18.99958 19.00000 0.99998
0.96 363 23.99986 24.00000 0.99999
0.97 560 32.33331 32.33333 1.00000
0.98 1029 49.00000 49.00000 1.00000
0.99 2899 99.00001 99.00001 1.00000

* *Expected steady state queue length for this ap-

proximation.

**Expected steady state queue length for M/M/l

queue.
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TABLE 2-2

RELK.TIN TIEBAE DEIITO RESULTS

j APP NEXACT N AP/NEXACT

0.10 3 0.11071 0.11111 0.99640
0.20 5 0.24962 0.25000 0.99846
0.30 7 0.42805 0.42857 0.99878
0.40 9 0.66562 0.66667 0.99843
0.50 12 0.99841 1.00000 0.99841
0.60 17 1.49817 1.50000 0.99878
0.70 24 2.32998 2.33333 0.99856

0.80 39 3.99468 4.00000 0.99867
0.81 42 4.25816 4.26316 0.99883
0.82 44 4.54960 4.55556 0.99860
0.83 47 4.87609 4.88235 0.99872
0.84 50 5.24299 5.25000 0.99866
0.85 54 5.65945 5.66667 0.99873
0.86 58 6.13480 6.14286 0.99860
0.87 63 6.68360 6.69231 0.99871
0.88 69 7.32424 7.33333 0.99876
0.89 76 8.08115 8.09091 0.99879

0.90 84 8.98902 9.00000 0.99878
0.91 94 10.09890 10.11111 0.99879
0.92 106 11.48572 11.50000 0.99876
0.93 122 13.26937 13.28571 0.99877
0.94 143 15.64722 15.66667 0.99876
0.95 173 18-97685 19.00000 0.99878
0.96 217 23.97024 24.00000 0.99876
0.97 291 32.29327 32.33333 0.99876
0.98 49 48.93933 49.000000987
0.99 884 98.87863 99.00001 0.99877

*Expected steady state queue length for this ap-
p rox imat ion.

**Expected steady state queuie length for M/M/1
q ue uti.
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A problem arises, however, when for two contiguous

intervals, Ij and KJK j+I. In this case, the dimensions

of the associated p.(t) and Pj+l(t) are different, and an exact

assignment cannot be made. Some possible approaches for solving

this problem include:

1) Setting all K.'s equal to a number which is greater
than or equalJthe largest possible value of any
K. over the intervals of interest. The advantage
o? this approach is that it guarantees that all
P.(t)'s have the same dimension. The disadvan-
tAges, however, include:

0 Computational inefficiency, since one is
always working with the maximum M/M/l/K
approximation between intervals.

0 It will usually be impossible to deter-
mine just what the appropriate maximum
value for K should be. Recall that the
K's are determined dynamically as the
analysis proceeds and rely on information
obtained not only from the current inter-
val but the preceding interval as well.

2) If K < Kj+I, projecting (in the strict mathematical

sense) pj(tj-tj I ) directly in p1+l(0). For example,

if we let pj(t) = (pj,o(t), Pj,l(t),..., Pm(t)) and
Pj+l(t) = (Pj+lO(t) , Pj+l,n(t)) where mn, then

projecting pj(t) into pj+l(t) implies that pj,0 (t) =
SPj+l,O(t), Pj,I ( t )  = Pj +l 'l(t), ... , Pj,m(t) = Pj+l,k(t)

and pj+ 1 ,(t) = 0 Vk such that k<2<n. On the other

hand, if K.>K+ then we must "scale" the dimension
j j+l'

of pj(t) down to that of Pj+l(t) ensuring, however,

that n(t.) = E[pj(tj-tj_l)] equals n(t) =Epj+l(O).

One possible method of performing this scaling is as

1 ()Ilows. Let ni.,ax be the least integer which is greater than or
c(qual to n(t). Define pj+,o(0) = 1 - n(tj)/nmax, Pj+l,nmax(O)

n(t.)/nmax, and p j+l1(0) = 0 for all iXO or nmax. It is
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obvious then that with this representation,

S J+li(0) = 1 and EIpj+l(O)] = (tj).

and we have achieved the required mapping between pj and Pj+I"

Using Stern's basic technique together with the solu-

tions described above, a useful and computationally efficient

method becomes available for analyzing the approximate tran-

sient behavior of both a stationary M/M/1 queue and the (dis-

cretely time-varying) M(t)/M/1 queue. In the next section, we

investigate those aspects of the M(t)/M/1 queue which will

permit us to extend the analysis described above to networks

of such queues.

2.2 APPROXIMATE CHARACTERIZATION OF THE DEPARTURE PROCESS

This section develops an approximate characterization

of the departure process for the M(t)/M/l queue described above

and details how this characterization can potentially facilitate

the solution of general networks comprised of such queues. Al-

though several papers [CD 1974] [NATV 19751 (DALE 1976] have ex-

amined the topic of departure processes for a wide variety of

queues, none have discussed in any depth the nature of the de-

parture process during a transient period.

In order for us to begin to characterize the departure

process, we make the following observations and approximations:

S ising the techniques described in Section
2.1, we can obtain an approximate value
for n(t) for any t. Given that each
customer has a mean service time of l/p,

2-11
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the expected virtual waiting time for
the queue at the beginning of some inter-
val I is n(t.)/p. This means thatj+l
during the interval [t., tj+(n;(t.)/P))

[ti,ti+v), the server is expected to be

busy. The departure process will, there-
fore, appear as the service process and
have parameter p.

0 Given that the expected virtual waiting
time at the beginning of some interval
I is non-zero and that Xj+iO, then
j +1
the departure process will.have param-
eter p up to the instant T1 when the
server first goes idle (which may exceed
t.+v above).

* After the first instant T , t.+v _< T <

ti+l, such that the server goes idle, we

approximate the departure process as the

input process with parameter hj+ I . This

approximation makes liberal use of Burke's
Theorem [BURK 1956] which states that M
=> M; its accuracy will depend in part
upon the relaxation time.

Our first objective then is to determine when (and

if) the first (expected) instant, Ti, occurs in interval I.

such that the server goes idle. We will assume that pj(tj I )

and n(tj_ 1 ) are known. While these last parameters are as-

sumed to be derived by the methods presented in Section 2.1,

our subsequent analysis deals explicitly with the M/M/l queue

and does not involve its M/M/I/K approximation.

Recalling that fundamental to any M/M/l queue is a

birth-death process with transition rates A and p, we find

ourselves dealing with an infinite Markov chain whose states

are just the number in system. If we denote the passage time

probability density function (pdf) from a state n to state 0
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by s (0O , and the corresponding random variable by Tn,0 ' it
is immediate that

SO(T) =s-(t a sai10) 6 . .. 0 IT (8)

where sfj(x) =sn() and 6 is the convolution operator. In

terms of random variables we have

Tn, ~T nn- + Tn-l,n-2 + ... + T'

A recursive probabilistic argument obtains s (T) as

follows. Let v = +jj. If we assume that we are in sAd state

n, the dwell time in that state has a pdf given by v*exp(-v*t).

Furthermore, with probability A/X+p there will be a transition

to state n+1, while with probability p/A+p the transition will

be to state n-l. Hence,

s-Cr) = .ve"v + ve-vl 0s- 1 S sj(T) (9n v v n+l(T (9

The recursion is obtained, apart from inversion difficulties,

by using Laplace transforms. The transform of (9) is then

seen to be

G()+ X i+(S) - -(s) (10)n s+X+P s+N+P l n

11-k+ + a (s)1
s+A+~j s+A+p +

S+A+j -n+l(

from which one can further derive

d (S ds nj5)

(s+A+p -AG- (s))2(1
n+ 1
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Clearly,

d a-(O) = E[T-] = T- (12)
d-s n n n

where

T- T
n nn-1

Hence,

T- 1(1 + A T-+l) (13)
n n

The mean time from state n to n-i may be described in

more compact form with the aid of the parameters n n defined

by:

n 1; nr = (A/P)n =pno n

where

An Pnn+l

Multiplying (13) y we obtain

pitT- pnn+T+ 1 =n (14)

from which we can derive

= (15)
n on jn• : n }Jn j=n

Ii follows that
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n-i 1

n-i 1 D

- P3

= O -- m n

mO OPp 1-p=Mn-i Mn

n-i i p,

ri=O PP

((16)

Thus within a particular interval Ii. we see that the time of

first idle is given by:

T i t , (tJ. k

t j1 +n~tj-l/n-1 1

1+- (1)

Now if T > t. or if a/p > 1 (i.e., p. > 1), then it
is expected that the server will not be idle during I.. We

.3
can therefore make the following observations:

1) In the case where either T > t. or A. >.; .3 - .3 J -
", ~ the departure process during I. can be

j .3
expected to appear as the service process
with parameter p.

2-15

• - -" -' - " ".- .W -. . "" " - -



2) in the case where T t J-1 (i.e., where

i(tj 1 ) = 0) and A. < p, the departure

process can be approximated as the input
process with parameter A..

3) When t T < t. and A. < p, the de-j-1 i 3 .
parture process can be expected to appear
as the service process with parameter p

up to time Ti after which is can be ap-

proximated as the input process with
parameter X..

Based on these observations, a general expression for

the interdeparture time pdf, d(s), within an interval I. becomes:

d(s) = pj(s)pe .3+ (-p'(s)) [pjpe

+ 1 p ) -Aji(s-t j _1)  6 p - P(s-tj . )
+ (i-p. )A e * uje

~ (18)

where the density function p!(s) is defined as:

1 if t_j 1 < s < Ti

p.(s) = s
-J 0 otherwise

This expression really implies, however, that d(s) is a step-
wise time-varying exponential distribution; hence, the depar-

ture process is of the form M(t). It is worth noting, though,

that the form of M(t) for the departure process will usually
not be equal to the form of M(t) for the input process. More

specifically, the instants at which the parameters associated

with the arrival and departure process change, as well as the

vfiluvs they acquire between those instants, will usually be

* * different.
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There are several implications of these results.

Probably the most significant is the fact that the approximate

analysis of networks of M(t)/M/I queues now becomes tractable.

Since the output of any M(t)/M/I queue is now in the same form

as the input to all others, the interconnection of such queues

is straightforward.

A second major implication is that it is now possible

to approximately determine (for networks of such queues) just

how long it takes a change in the arrival rate of one M(t)/M/I

queue to propagate through a series of such queues, and moreover,

when equilibrium will be re-established for the entire network.

Finally, from the point of view of potential practical

applications, the ability to approximately analyze the transient

behavior of networks of such queues lends itself immediately

to such problems as the modeling of dynamic routing strategies,

internetworking problems and network stability analysis.

.

2-17

d- ,



3. EXPERIMENTAL RESULTS

This section summarizes the results of several experi-

ments that were performed to validate the approximation tech-

niques presented in Section 2. In all cases, the latter tech-

niques were compared to the output of simulations or analytic-

ally-derived exact values. The experiments had four objectives:

1) Given stationary values for A and p, to
determine the relative accuracy of the
M/M/l/K approximation developed in section
2.1 compared to the exact (analytical) M/M/1
case and simulation.

2) To evaluate the proposed (approximate) method
of analyzing the behavior of a nonstationary
M(t)/M/1 queue as a sequence of stationary
M/M/I/K queues.

3) To determine the validity of approximately
characterizing the departure process of an
M(t)/M/I queue as a discretely time-varying
M(t) process.

4) To provide a comparison of the M/M/l/K ap-
proximation technique with Moore's [MOOR
1975] embedded Markov chain approach.

In sections 3.1 - 3.4 below, each of these objectives is sepa-

rately addressed.

3.1 M/M//IK APPROXIMATION RESULTS

A number of experiments were run to determine the

sensitivity and accuracy of the M/M/l/K approximation described
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in section 2.1 to variations in the values of K, initial queue

length and p. Figure 3-1 illustrates the way in which the

transient expected queue length varies over time for K=I0, 15,

20 and 40. In all cases, the initial queue length is assumed

to be equal to 10 and p=.8 (with p=50).

The variations that can be seen in the curves associated

with the different values of K derive from two sources. The

first centers about the fact that the steady state values for

the expected queue length are monotonically increasing with K;

hence, the M/M/l value is asymptotically approached as K + c.

The second involves the relaxation times associated with par-

ticular M/M/l/K approximations and the fact that they too are

monotonically increasing with K.

The combined effect of these two conditions is that,

in comparison to the exact M/M/Il case, an M/M/l/K approxima-

tion based on a small value of K approaches steady state more

rapidly and with an asymptotic expected queue length that is

less than an approximation based on a larger value of K. It

was for these reasons that, in attempting to select a value

for K (given a fixed initial queue length and p), we required

that the M/M/l/K approximation provide an expected steady state

queue length within .2% of the expected M/M/l value together

with a relaxation time within 33% of the M/M/l value while at

the same time maintaining computational tractability.

Figure 3-2 illustrates how our technique performs in
comparison to simulations based on the same underlying para-

meters of p=. 8 , p=50 and an initial queue length of 10. Given

these conditions, our technique specifies that we use an M/M/l/K

approximation for which K=49. As can be seen, close agreement

is obtained; in fact, the average difference between the results

3-2
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associated with the approximation and those associated with

the simulation was only 0.179, with a standard deviation of

0.153. Similar agreement was obtained in other experiments.

3.2 M(t)/M/I APPROXIMATION RESULTS

A series of experiments was run to compare the tran-

sient expected queue lengths associated with an M(t)/M/l queue

derived both by simulation and the approximate sequential

M/M/I/K technique described in section 2.1. Figure 3-3 illus-

trates the outcome of analyzing one particular M(t)/M/l queue

for which the arrival process was permitted to vary such that

= 35, 40 and 25 for three consecutive intervals, each of 2

second duration. For all intervals, p = 50 and was fixed.

Table 3-1 compares the expected queue lengths at the

end of each interval obtained by our approximation and the

simulation with those values associated with an M/M/l queue.

Since for each interval, the interval length is greater than

its associated relaxation time, the (absolute) difference be-

tween the expected queue length obtained by simulation (NSim)

and the M/M/] value ( ss), and the difference between Nsim and

the expected queue length obtained by our approximation (app),

serve as relative figures of merit.

TABLE 3-1

END OF ... p N. N N IN. -N I I&. -N Isim app ss sim ss sim app,

INTERVAL 1 0.7 2.308 2.319 2.333 0.025 0.011

INTERVAL 2 0.8 3.545 3.818 4.000 0.455 0.273

INTERVAL 3 0.5 1.018 0.999 1.000 0.018 0.019
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To further demonstrate the "goodness of fit" of the

approximation results with those obtained by simulation, the

table contained in Figure 3-3 shows how the mean queue lengths

of each differed over the three intervals and includes standard

deviations for each. Once again, the close agreement observed

was repeated in other similar experiments.

3.3 DEPARTURE PROCESS APPROXIMATION RESULTS

Several experiments were run to validate our conten-

tion that during an interval whose initial queue length is

greater than zero, the departure process of an M/M/I queue can

be approximated as the discretly time-varying M(t) process

described in section 2.2. Specifically, our contention is

that between the beginning of the interval and the time of

first idle, Ti, the departure process has a probability den-

sity function which can be approximated as pe
" t (0<t<T i).

iAfter T , we assume that the departure process has a pdf which

can be approximated by Ae "A t (Ti<t).

Table 3-2 illustrates how the expected time of first
Tiidle obtained via simulation (Tsim) compares with our analytic

i
result (T1 ) for p = .5, .8 and .9, p = 50 (and fixed), and

an
initial queues lengths of 5 and 10 customers. In all cases,
the close agreement predicted by Eqs. 16 and 17 was observed.

Table 3-3 shows how the interdeparture distributions

* derived from simulations associated with several intervals

having different initial queue lengths compare to the predic-

4ted approximate values. Both the interdeparture distribution

Mean and standard deviation for the "pre-T"' period and "post-

r'" period are given. Once again, the close agreement observed,

combined with similar results from other experiments, lend
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TABLE 3-2

INITIAL i i Ti  i  I
QUEUE LENGTH S 50) sim an I sim an

10 0.5 0.3979 0.4 0.0021

10 0.8 0.9867 1.0 0.0133

10 0.9 1.8734 2.0 0.1266

5 0.5 0.2027 0.2 0.0027

5 0.8 0.4735 0.5 0.0265

5 0.9 0.9851 1.0 0.0149

TABLE 3-3

T-4475

PRE - T POST - T

INITIAL -* * APPROX. APPROX.
QUU LENGTH p (=50) d d ?IEAN=S.D. d M AN=S.D.

10 0.5 0.0198 0.0194 0.02 0.0405 0.0405 0.04

10 0.8 0.0204 0.0206 0.02 0.0254 0.0256 0.025

10 0.9 0.0201 0.0200 0.02 0.0230 0.0228 0.0222

5 0.5 0.0201 0.0196 0.02 0.0405 0.0406 0.04

5 0.8 0.0200 0.0206 0.02 0.0255 0.0254 0.025

5 0.9 0.0202 0.0202 0.02 0.0229 0.0228 0.0222

m ean interdeparture time; 
0
d = standard deviation of interdeparture tim.

increasing confidence to the accuracy and robustness of the

approximation.
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3.4 COMPARISON WITH MOORE'S TECHNIQUE

In this section, we provide some comparative results

between the methods presented in this paper and those proposed

by S.C. Moore [MOOR 19721 [MOOR 1975]. As was mentioned in
Xthe introduction, Moore's technique centers about the M (t)/Ey/1

queue and employs an imbedded Markov chain approach to analyze

its behavior. In applying this approach, the system status is

observed only at departure instants. If a simple imbedded

Markov chain approach (which assumed finite buffer size) were

used, computational results could be obtained very quickly;

however, all connection with the real or continuous time axis

would be lost.

Realizing this, Moore developed an exact technique

for maintaining the time axis connection in the case of a sta-

tionary arrival process, and an approximate technique for doing

the same when the arrival process is nonstationary. The latter

approximation resides in determining the times of the nth ser-

vices initiation and completion. If one begins with T0 = 0

and a known queue length distribution, it is necessary to apply

the equations

' ~T1 =Tn +

n n-l n

. TI
T~ =T +STr n Tn +Sn

alternately in order to maintain exact correspondence between

the imbedded Markov chain behavior (associated with the queue)

and the continuous time axis. In the equations, Tn is the
'-.

time of the nth customers departure, Xn is the server idle

time in the interval (Tn.1, Tn) , and Sn is the length of the

nth customer's service time.

3-9



In order to avoid the complexity of obtaining exact

distributions for all terms involved, Moore develops approxima-

tions based on the expected values of Tn and Tn . These are

then used to derive both the time from departure n to the next

&rrival (which depends on Tn-1) and the number of arrivals

during service n (which depends on T1). The approximation isn"

due to the fact that once t.e arrival parameters shift, the

expected values E[Tn I and E[T I are only approximate.

Figure 3-4 shows how Moore's technique compares with

that developed in this paper. As in Figure 3-3, the analysis

proceeds over three intervals, the first two of which of 2

second duration each and the third which is infinite. The p

associated with the intervals is .7, .8 and .5, respectively.

As is seen, the two methods exhibit quite close agreement.

'I
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4. SUMMARY OF RESULTS AND FUTURE WORK

In the previous sections, we have examined in some

detail Stern's M/M/I/K approximation technique for obtaining

the transient behavior of an M/M/i queue and proposed methods

by which it can be applied in a practical, computationally

efficient manner.

We have also shown how the latter technique can be

extended to accommodate the analysis of the M(t)/M/i queue

where we assume that the M(t) arrival process can be approxi-

mated by a discretely time-varying Poisson process. The anal-

ysis of the M(t)/M/I queue then becomes the analysis of a se-

quence of stationary M/M/i/K queues over finite intervals whose

boundaries are defined by the instants when the arrival param-

eter changes.

Together with the above results, we have proposed an

approximate expression for the departure process of the M/M/i

queue which implies that for an M(t)/M/I queue whose arrival

process is discretely time-varying M(t), so too the departure

process can be approximated as discretely time-varying (albeit

r of a different form). The simulation results of Section 3.3

have shown this approximation to be accurate.

Finally, we have compared our technique with that

proposed by S.C. Moore using an imbedded Markov chain approach.

Although Moore's technique permits the modeling of a wider

range of queues than our technique at this time, in the partic-

ular case of the M(t)/M/I queue it is felt that our technique

is more accurate. This is true especially during transitions

4-1
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to and from intervals for which pml or p>l when the arrival

process may change and a number of arrivals occur between two

consecutive departures. The fact that our technique is tightly

coupled to the instants when the parameters associated with

the underlying Poisson processes change allows it to "react"

more rapidly to varying queue dynamics.

The results of this paper will serve as the basis for
further research into a number of areas including:

0 Extension and refinement of the finite
buffer approximation technique to more
general queues including the M(t)/E /1

MX(t)/E /1 and Ex (t)/E /1 
queues.

y y y
0 Extension of the methods and results de-

scribed herein to methods for analyzing
feed forward and general queueing networks.

* Examination of the effects that different
service disciplines and multiple classes
have on the behavior of such queues.

a Identification of the critical error
sources associated with the approximation
techniques and better quantification of
their effects.

0 Application of the methods to several
practical problems including internet-
working problems, network stability anal-
ysis, design and modeling of dynamic and
other routing strategies, and optimal re-
source sharing in a transient environment.

,41-
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